

ELECTROLYTIC CAPACITORS

PRODUCT OVERVIEW

ALUMINUM ELECTROLYTIC CAPACITORS SOLID CONDUCTIVE POLYMER CAPACITORS HYBRID CONDUCTIVE POLYMER CAPACITORS 2024

CONTENT

	WORLD OF CAPXON	Page
0	Our Capacitor Technologies	3
	SMD Aluminum Electrolytic Capacitors	6
	THT Aluminum Electrolytic Capacitors	8
	Snap-In Aluminum Electrolytic Capacitors	15
<u>A</u> <u>A</u>	Screw Terminal Aluminum Electrolytic Capacitors	20
	SMD Multilayer Solid Conductive Polymer (MLPC)	23
	SMD Solid Conductive Polymer Capacitors	26
	THT Solid Conductive Polymer Capacitors	29
	SMD Hybrid Conductive Polymer Capacitors	32
	THT Hybrid Conductive Polymer Capacitors	36

CapXon_Ver. 005 – 01/08/2023 Electrolytics Capacitor Solutions

A WORLD OF ELECTROLYTIC CAPACITORS

CapXon's know-how in Electrolytic Capacitors covers technologies with aluminum foil. These are Aluminum Electrolytics, Solid Conductive Polymers and the combination known as Hybrid Conductive Polymers:

Aluminum Electrolytic	Description	Features
Dielectric — Paper	Rated Voltage • V _R	4 VDC to 650 VDC
Al ₂ O ₃	Cathode Material	Liquid Electrolyte
	Self-healing of Dielectric	Yes
- Cathod	Package	Widest range in all sizes
⊕	Stability	Reduced performance at low temperature
	Lifetime	Limited life at high temperature
Liquid Electrolyte	Reliability	Automotive AEC-Q200 qualified
Solid Conductive Polyme	r Description	Features
Dielectric Paper	Rated Voltage • V _R	2.5 VDC to 100 VDC
Al ₂ O ₃	Cathode Material	Solid Conductive Polymer
	Self-Healing of Dielectric	No
+ joy	ESR	Ultra-low ESR at high frequency
	Stability	Stable for low and high temperature
5	Lifetime	Very stable and long life - no dry out
Solid Conductive Polymer	Reliability	Only internal standard qualification
Hybrid Conductive Polymo	er Description	Features
Dielectric — Paper	Rated Voltage • V _R	16 VDC to 400 VDC
Al ₂ O ₃	Cathode Material	Solid Conductive Polymer & Liquid Electrolyte
+ 8 -	Self-Healing of Dielectric	Yes
+ O O O O O O O O O O O O O O O O O O O	ESR	Very low ESR at high frequency
€ Ç	Stability	Even more stable than liquid type
	Leakage Current • ILEAK	Lower leakage current than Solid Conductive Polymer Type
Solid Conductive Liqu Polymer Electr	Reliability	Automotive AEC-Q200 qualified

CapXon_Ver. 005 – 01/08/2023 Electrolytics Capacitor Solutions

COMPARISON OF ELECTROLYTIC CAPACITOR TECHNOLOGIES

Characteristics	Aluminum Electrolytic Capacitor	Solid Conductive Polymer Capacitor	Hybrid Conductive Polymer Capacitor
ESR at High Frequency	(120 ~ 1000 mΩ)	(7 ~ 15 mΩ)	(20 ~ 30 mΩ)
Leakage Current • I _{LEAK}	(0.01*C _R *V _R)	(0.2*C _R *V _R)	(0.01*C _R *V _R)
Ripple Current • I _R	(~ 600 mA)	(2 000 ~ 7 000 mA)	(2 000 ~ 3 000 mA)
Rated Voltage • V _R	(~ 700 V)	(~ 100 V)	(~ 400 V)
Operating Temperature Characteristics	(-40 ~ + 125 °C)	(-55 ~ + 125 °C)	(-55 ~ + 150 °C)
Low Temperature Characteristics	(-40 ~ + 125 °C)	(-55 ~ + 125 °C)	(-55 ~ + 150 °C)
Lifetime	(105 °C / 3 000h)	(105 °C / 5 000h)	(105 °C / 10 000h)
Failure Mode	Open	Short	Open

best performance

... well performance

... basic performance

CapXon_Ver. 005 – 01/08/2023 4 Electrolytics Capacitor Solutions

Aluminum Electrolytic Capacitors

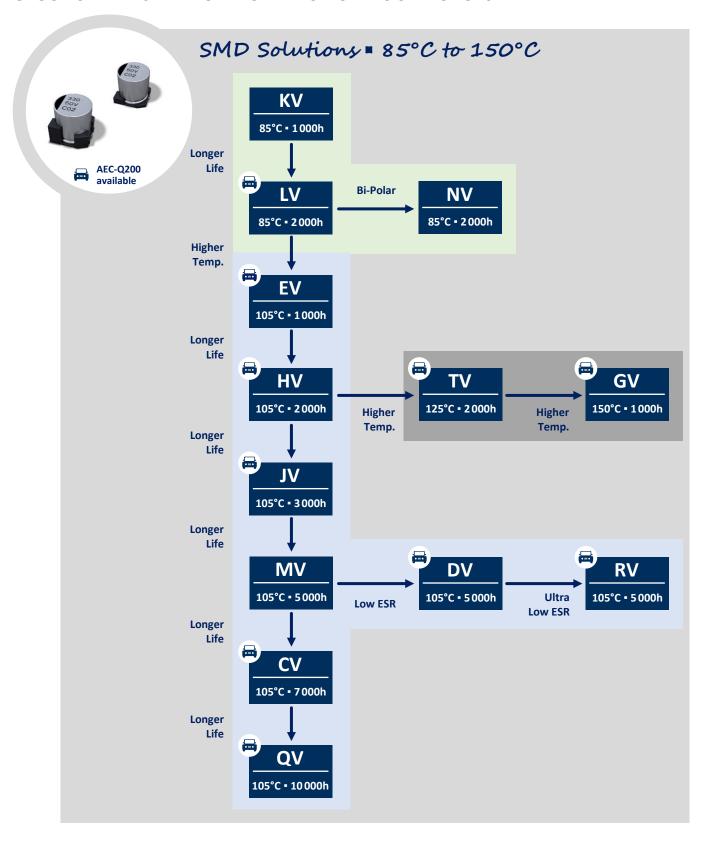
SMD Types

OVERVIEW - SMD ALUMINUM ELECTROLYTIC CAPACITORS

Sei	ries	Datasheet	AEC-Q200	Bi-Polar	High Temperature	High Voltage	Long Life	Low ESR	Low Leakage	Standard	Ultra Long Life	Ultra Low ESR	Vibration Proof	Ra	erature nge (C)	Rai	tage nge V)	Ra	itance nge ıF)	Endurance (hours)
KV		PDF							•					-40	+85	6.3	50	1	330	1000
NV		PDF		•										-40	+85	6.3	50	1	560	2000
LV		PDF	•			•				•			•	-40	+85	4	450	1	6800	2000
EV		PDF	•							•			•	-55	+105	6.3	50	1	1500	1000
HV		PDF	•			•	•						•	-55 -40	+105	6.3 160	100 450	1 2.2	6800 68	2000
JV		PDF	•				•						•	-55	+105	6.3	50	1	1000	3000
DV		PDF	•					•					•	-55	+105	6.3	100	1	6800	2000 to 5000
RV		PDF	•									•	•	-55 -40	+105	6.3 160	100 450	1 2.2	6800 68	2000 to 5000
MV		PDF									•			-40	+105	6.3	50	1	1000	5000
CV		PDF	•								•	•	•	-40	+105	6.3	50	22	1500	7000
QV	NEW	PDF	•								•		•	-25	+105	6.3	50	10	680	10000
TV		PDF	•		•								•	-40	+125	10	450	1	330	1000 to 2000
GV	NEW	PDF	•		•								•	-55	+150	10	50	33	3300	1000

TYPICAL APPLICATIONS

Buffering	Filtering	DC/DC Converters	Miniature Power Supplies	Smoothing
*	-m- -		•	


ADDITIONAL INFORMATION

For further information on our Aluminum SMD Capacitors, simply click on the symbols in the table below.

General Precautions & Guidelines	Packaging Information	Vibration Test Profiles	3D Models	Reliability Tests	Environmental Declarations
		(((+))) **FOR VIBRATOR*	BD	T	S

GROUP CHART • SMD ALUMINUM ELECTROLYTIC CAPACITORS

Aluminum Electrolytic Capacitors

Radial Types

OVERVIEW • THT ALUMINUM ELECTROLYTIC CAPACITORS

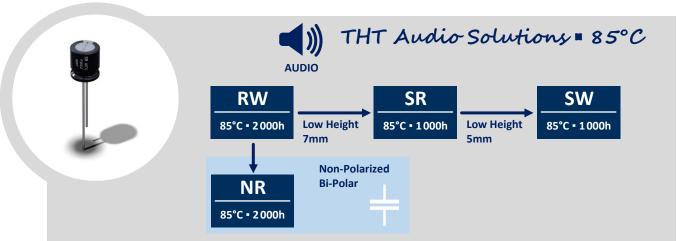
Features

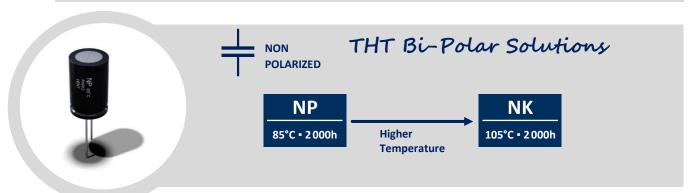
Series	Datasheet	AEC-Q200	Bi-Polar	High Temperature	Low Impedance	Low Height	Low Leakage	Overvoltage Vent	Photo Flash	Slim Type	Standard	Ultra Long Life	Ultra Low Impedance	Ultra Miniaturized	Tempe Rai (°	nge	Rai	tage nge V)	Ra	itance nge IF)	Endurance (hours)
RF	PDF								•						-20	+55	330	350	100	450	5000 times
SS	PDF					•								•	-40	+85	4	50	1	330	1000
SM	PDF					•								•	-40	+85	4	63	1	470	1000
SR	PDF					•									-40	+85	6.3	50	1	220	1000
sw	PDF					•									-40	+85	4	50	1	470	1000
SH	PDF					•								•	-40	+85	4	63	1	470	2000
RW	PDF										•				-40	+85	6.3	100	1	33000	2000
NR	PDF		•												-40	+85	6.3	100	1	1000	2000
GS	PDF										•				-40 -25	+85	6.3 160	100 450	1 1	33000 560	2000
NP	PDF		•												-40 -25	+85	6.3 160	100 250	1 1	3300 47	2000
ST	PDF					•								•	-40	+105	4	50	1	220	1000
SK	PDF					•								•	-40	+105	4	63	1	470	1000
SZ	PDF				•									•	-55	+105	6.3	35	6.8	330	1000
KZ	PDF				•										-40	+105	6.3	50	1	6800	1000 to 2000
KS	PDF							•							-25	+105	200	400	4.7	400	2000
кү	PDF									•					-25	+105	250	450	12	150	2000
км	PDF										•				-40 -25	+105	6.3 160	100 500	1 1	22000 560	2000
NK	PDF		•												-40 -25	+105	6.3 160	100 250	1	3300 47	2000
SJ	PDF					•								•	-40	+105	6.3	63	1	220	2000
ш	PDF						•								-40	+105	6.3	63	1	2200	2000
LZ	PDF												•		-40	+105	6.3	25	220	3300	2000
SY	PDF				•	•									-55	+105	6.3	50	1	330	2000

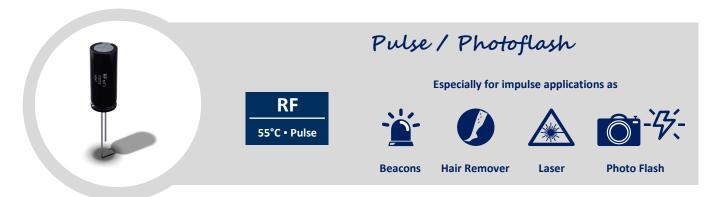
CapXon_Ver. 005 – 01/08/2023 9 Electrolytics Capacitor Solutions

OVERVIEW • THT ALUMINUM ELECTROLYTIC CAPACITORS

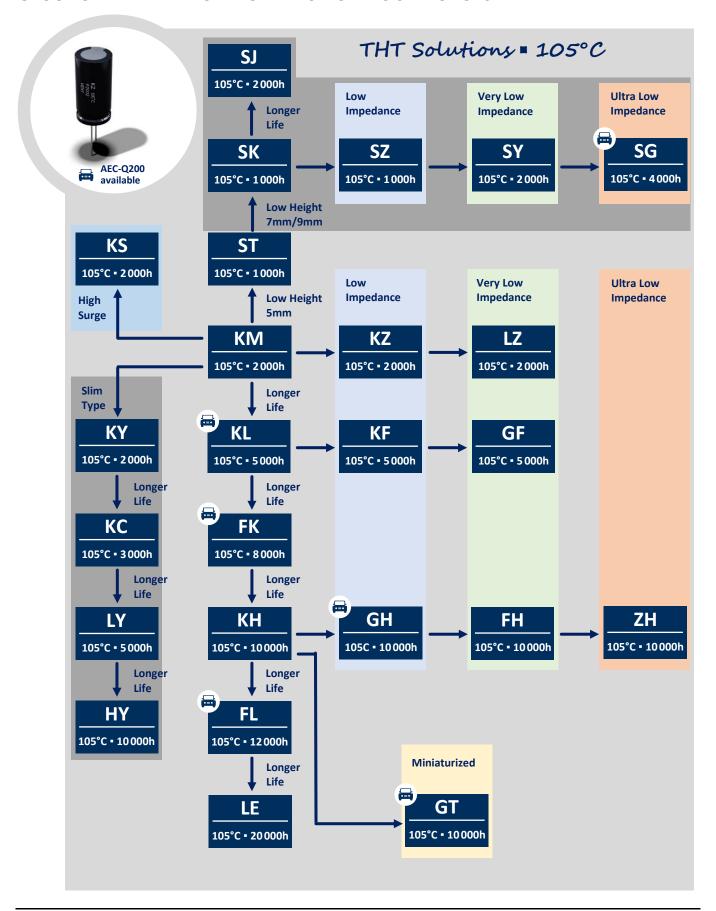
Features

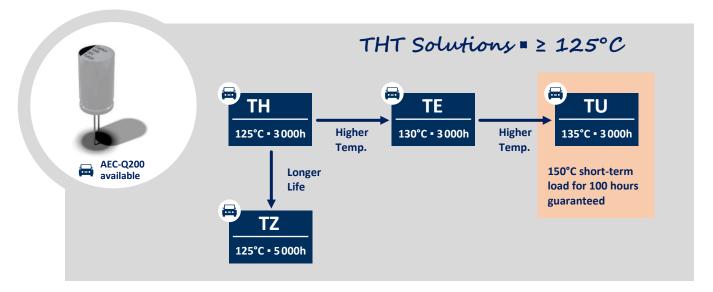



Se	ries	Datasheet	AEC-Q200	Bi-Polar	High Temperature	Low Impedance	Low Height	Low Leakage	Overvoltage Vent	Photo Flash	Slim Type	Standard	Ultra Long Life	Ultra Low Impedance	Ultra Miniaturized	Rai	erature nge C)		tage nge V)	Ra	:itance nge ıF)	Endurance (hours)
KF		PDF				•										-40 -25	+105	6.3 160	100 450	1	15000 330	2000 to 5000
GF		PDF				•										-40	+105	6.3	100	4.7	6800	2000 to 5000
КС		PDF									•				•	-25	+105	400	450	82	220	3000
SG		PDF	•				•								•	-40	+105	6.3	50	1	470	4000
FH		PDF												•		-40	+105	6.3	100	6.8	18000	4000 to 10000
LY		PDF									•					-25	+105	250	450	12	150	5000
KL		PDF	•										•			-40 -25	+105	160 450	400 500	3.3 2.2	330 180	5000
GH		PDF	•			•										-55	+105	6.3	100	1	12000	5000 to 10000
КН		PDF											•			-40 -25	+105	10 4!	400 50	6.8 6.8	3300 100	5000 to 10000
FK		PDF	•										•			-40 -25	+105	160 50	450 00	1 4.7	330 120	6000 to 8000
ZH		PDF												•		-40	+105	6.3	100	8.2	8200	6000 to 10000
FL		PDF	•										•			-40 -25	+105	160 50	450 00	1 10	680 68	8000 to 12000
HY		PDF									•					-25	+105	250	450	12	120	10000
GT		PDF	•										•			-40	+105	10	100	1	330	10000
LE		PDF											•			-40	+105	160	450	1	68	12000 to 20000
тн		PDF	•		•											-40 -25	+125	10 4!	400 50	1 1	8200 47	1000 to 3000
TZ	NEW	PDF	•		•								•			-40	+125	10	100	4.7	1000	2000 to 5000
TE		PDF	•		•											-40	+130	10	400	2.2	4700	1000 to 3000
TU	NEW	PDF	•		•								•	•		-40	+135	25	100	160	12000	2000 to 3000

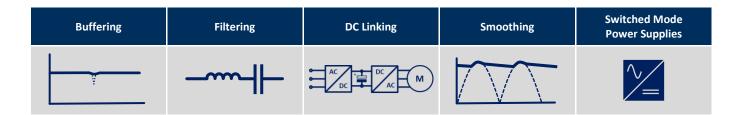


GROUP CHART • THT ALUMINUM ELECTROLYTIC CAPACITORS





GROUP CHART • THT ALUMINUM ELECTROLYTIC CAPACITORS



GROUP CHART • THT ALUMINUM ELECTROLYTIC CAPACITORS

TYPICAL APPLICATIONS

ADDITIONAL INFORMATION

For further information on our Aluminum THT Capacitors, simply click on the symbols in the table below.

General Precautions & Guidelines	Packaging Information	3D Models	Reliability Tests	Environmental Declarations
		30	7	

CapXon_Ver. 005 – 01/08/2023 Electrolytics Capacitor Solutions

AVAILABLE LEAD TREATMENTS • THT ALUMINUM ELECTROLYTIC CAPACITORS

In addition to the taped versions, the following lead treatments are also possible. Please contact your local CapXon representative if you have any further questions.

CA	CE	CF / CG / CH / CI	FA / FE
Cutted Leads Standard Lead Spacing	Cutted Leads Wide Lead Spacing ≤ 2.5mm	Cutted Leads Wide Lead Spacing ≥ 2.5mm	Wide Lead Spacing > 5mm Long Anode
FB / FC / FD	KA	KE	KF
Wide Lead Spacing ≤ 3.5mm Long Anode	Kinked Anode and Cathode Standard Lead Spacing	Kinked Anode and Cathode Wide Lead Spacing ≤ 2.5mm	Kinked Anode and Cathode Wide Lead Spacing 5mm
EF	СК	JI	CD
Double Kinked Anode and Cathode Lead Spacing 5mm	Kinked Anode	Polarity Protected Footprint Cathode Bended	Polarity Protected Footprint Anode Pressed
CR	CL	CZ	CS
Bended Leads Cathode Right	Bended Leads Cathode Left	Quasi SMD • Bended Leads Cathode Right	Quasi SMD • Bended Leads Cathode Left

Aluminum Electrolytic Capacitors

Snap In Types

OVERVIEW • SNAP-IN ALUMINUM ELECTROLYTIC CAPACITORS

Features

Se	ries	Datasheet	AEC-Q200	High Ripple Current	High Temperature	Low ESR	Long Life	Miniaturized Size	Photo Flash / Pulse	Standard Size	Ultra Long Life	Vibration Proof		erature nge C)	Volt Rai (\	nge	Ra	itance nge ıF)	Endurance (hours)	Useful Life (hours)
SF	HIGH	PDF							•				-20	+55	330	350	150	1500	> 5000	times
LP	ECONOMY GRADE	PDF								•			-40 -25	+85	6.3 385	350 600	100 22	1mF 2700	2000	3000 to 5000
UB	HIGH	PDF								•			-40 -25	+85	200 50	450 00	68 100	3300 1500	2000	5000
UC	HIGH	PDF								•			-40 -25	+85	200 500	450 630	68 56	6800 1500	3000	7000
UD	HIGH	PDF					•			•			-40 -25	+85	200 500	450 600	68 47	2700 680	5000	10000
НР	ECONOMY GRADE	PDF								•			-40 -25	+105	6.3 400	350 550	68 47	1mF 1200	2000	3000 to 5000
UJ	HIGH	PDF	•							•			-40 -25	+105	200 500	450 550	82 47	3300 1000	2000	5000
UK	HIGH	PDF	•							•			-40 -25	+105	200	450 550	68 47	2200 680	3000	8000
UE	NEW	PDF	•					•					-40 -25	+105	160 475	450 500	120 68	4700 820	3000	8000
UA	NEW	PDF	•	•		•							-40	+105	160	450	56	3300	3000	8000
UL	HIGH	PDF	•				•			•			-40 -25	+105	200 500	450 550	82 47	2700 680	5000	10000
UG	NEW	PDF	•				•	•					-40 -25	+105	400 475	450 500	120 68	1200 820	5000	10000
UF	NEW	PDF	•	•		•	•						-40 -25	+105	200 475	450 500	100 56	2700 560	5000	10000
UM	NEW	PDF	•								•		-40	+105	160	450	47	2200	7000	10000
UH	NEW	PDF	•								•		-40	+105	200	450	39	1500	10000	12000
нс	HIGH	PDF	•	•	•	•					•	•	-55	+125	25	63	600	3300	3000	4000
нн	HIGH	PDF	•		•						•		-40	+125	400	450	47	560	3000	4000

Legend

Economy Series

Not for 24h continuous applications

HIGH

High Reliability Series

For 7days / 24h continuous applications

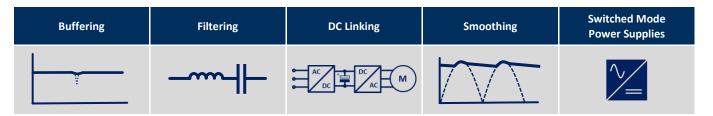
New Product Series

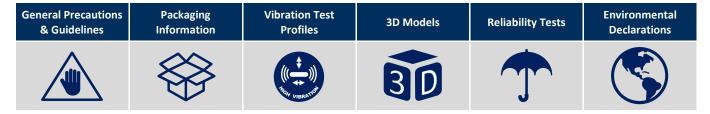
For 7days / 24h continuous applications

COMPARISON • ECONOMY GRADE SERIES vs. HIGH RELIABILITY GRADE SERIES

Technical performance, quality control and application area

		Economy Gra	ade ECONO		Grade	
CapXon Series	;	LP	НР		D • UE • UF • UG • • UM • HC • HH	
	Working voltage and ripple current change	Low	Stable condition		Various changes	
	Recommended frequency range	Low	Mains 100/120Hz	Low to High	100/120Hz to several kHz	
	Temperature stability	Star	dard	High	Harsh and outdoor usage	
Technical Performance	Leakage current stability (ILEAK)	Star	dard	High	Harsh and outdoor usage	
renormance	Dissipation factor (tanδ)	Star	dard	Low	Lower self-heating	
	Impedance (IMP)	Star	dard	Low	Lower self-heating	
	Resistance to ripple current and surge voltage	Star	dard	High	More resistant to in-rush current and voltage spikes	
Quality	Stage aging voltage	Short	Electrical paramet within specification value range		Highly uniformity between electrical parameters	
Control	Sorting	Single	Electrical paramet within specification value range		Highly uniformity between electrical parameters	
	24 hours continuous operation				•	
	Battery chargers		•			
	Frequency converters				•	
	Industrial power supplies				•	
	Inverter household appliances				•	
	Inverter output filtering				•	
Application Area	Ordinary household appliances		•			
	Outdoor equipment				•	
	Rectifier input filtering		•			
	Renewable energy inverters				•	
	Servo drives				•	
	Standard power supplies		•			
	Uninterruptible power supplies (UPS)				•	


 $Cap Xon_Ver.\ 005-01/08/2023 \\ \hspace*{1.5cm} \textbf{Electrolytics Capacitor Solutions} \\$



TYPICAL APPLICATIONS

ADDITIONAL INFORMATION

For further information on our Aluminum Snap-In Capacitors, simply click on the symbols in the table below.

AVAILABLE TERMINALS • SNAP-IN ALUMINUM ELECTROLYTIC CAPACITORS

Snap-In capacitors are available with the following terminals.

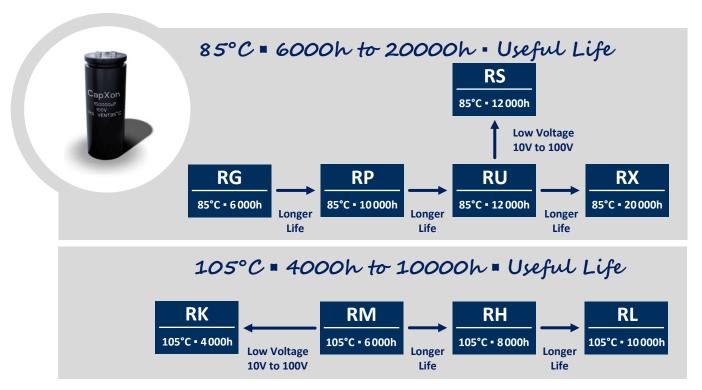
Please contact your local CapXon representative if you have any further questions.

PP	ZP	YP
2-Pin Standard Type • ØD = 20 to 45mm	3-Pin Polarity Protection • ØD = 20 to 45mm	Multi-Pin Polarity Protection • ØD = 20 to 45mm
LP	СР	HP
Slim Terminal ØD = 20 to 45mm	Lug Type Robust Terminals • ØD = 30 to 45mm	Lug Type Robust Terminals • ØD = 30 to 45mm
TP • Right	TP • Left	VP
Long Terminal Bended Cathode Right Side • ØD = 20 to 45mm	Long Terminal Bended Cathode Left Side • ØD = 20 to 45mm	Lug Type for Soldered Wires ØD = 20 to 45mm

Aluminum Electrolytic Capacitors

Screw Types

OVERVIEW • SCREW TERMINAL ALUMINUM ELECTROLYTIC CAPACITORSFeatures



Series	Datasheet	High Ripple Current	Long Life	Standard	Ultra Long Life	With Stud	Ra	erature nge C)	Volt Rar (\	_	Ra	itance nge ıF)	Endurance (hours)	Useful Life (hours)
RS	PDF				•	•	-40	+85	10	100	1800	10mF	2000	12000
RG	PDF			•		•	-40 -25	+85	160 500	450 630	390 1000	39000 10000	2000	6000
RP	PDF		•			•	-40 -25	+85	160 500	450 630	270 100	68000 10000	2000	10000
RX	PDF				•	•	-40 -25	+85	160 500	450 630	220 10000	1mF 15000	5000	20000
RU	PDF	•			•	•	-40 -25	+85	160 50	450 00	1000 820	33000 10000	2000	12000
RK	PDF			•		•	-40	+105	10	100	1000	10mF	2000	4000
RM	PDF		•			•	-40 -25	+105	160 50	450 00	180 330	68000 10000	2000	6000
RH	PDF	•	•			•	-40	+105	160	450	220	47000	2000	8000
RL	PDF		•		•	•	-40	+105	160	450	220	22000	5000	10000

GROUP CHART • SCREW TERMINAL ALUMINUM ELECTROLYTIC CAPACITORS

TYPICAL APPLICATIONS

Buffering	Filtering	DC Linking	Smoothing	Switched Mode Power Supplies
Ĭ.		AC DC AC M		

ADDITIONAL INFORMATION

For further information on our Aluminum Screw Terminal Capacitors, simply click on the symbols in the table below.

General Precautions & Guidelines	Packaging Information	3D Models	Reliability Tests	Environmental Declarations
		BD	T	

CapXon_Ver. 005 – 01/08/2023 Electrolytics Capacitor Solutions

Conductive Polymer Capacitors

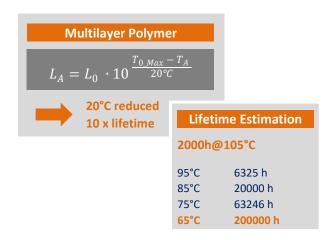
Stacked Types

OVERVIEW - SMD MULTILAYER POLYMER CAPACITORS (MLPC)

Features

Series	Datasheet	Low ESR	Low Height	Standard	Ultra Low Height	Ra	erature nge 'C)	Ra	tage nge V)	Ra	itance nge IF)	Endurance (hours)
XA	PDF	•	•	•		-55	+105	2	25	10	470	2000
XH NEW	PDF	•			•	-55	+105	2	25	22	330	2000

GROUP CHART • SMD MULTILAYER POLYMER CAPACITORS (MLPC)


LIFETIME - SMD MULTILAYER POLYMER CAPACITORS (MLPC)

MULTILAYER POLYMER CAPACITORS don't have a dry-out effect, either by the ambient temperature or the temperature rise in the capacitor. Only the influence of material due to the temperature in the component and the conversion of the conductivity limit the lifetime. The Arrhenius rule also applies to MULTILAYER POLYMER CAPACITORS their application.

The lifetime increases TEN-TIMES when the application of the capacitor is reduced by 20°C.

Below an example of a 105°C series (XA) with 2000h endurance.

Lifetime	Legend			
	L ₀	Endurance at max. capacitor temperature		
	L _A	Expected lifetime at application conditions		
	T _{0_Max}	Upper category temperature		
	T _A	Application temperature		

BENEFITS OF MLPC VS. MLCC TECHNOLOGY • EXAMPLE

vs.

Capacitor Technology	MLCC	MLPC	Benefits		
Nominal Capacitance	47μF	150μF	_		
Rated Voltage	6.3V (DC)	6.3V (DC)		Gain of Integration Density	
Size	0805	2917			
DC Bias at 6V	80.85% drop >> 9μF	No drop • stable 150μF	C	No MLCC DC Bias Issue	
System Capacitance at 6V	16 x 9μF = 144μF	1 x 150μF = 150μF			
Footprint per Component	0805 2mm x 1.5mm = 3mm ²	2917 7.4mm x 4.3mm = 32mm ²			
Footprint Occupation	A = 16 x 3mm ² A = 48mm ²	A = 1 x 32mm ² A = 32mm ²		No MLCC Cracking Issue	
Size Change Ratio	100%	66%		, and the second	
Example Picture of Applied Capacitor		space		Space Savings Cost Savings	

TYPICAL APPLICATIONS

CPU, FPGA	High Frequency	Substitution of MLCC Banks	USB Power	Voltage Stabilizing
and IC Buffering	Applications		Supplies & Banks	in LED Panels
	O M		- <u>~</u> H	

ADDITIONAL INFORMATION

For further information on our MLPC's, simply click on the symbols in the table below.

General Precautions & Guidelines	Packaging Information	3D Models	Reliability Tests	Environmental Declarations
		BD	T	

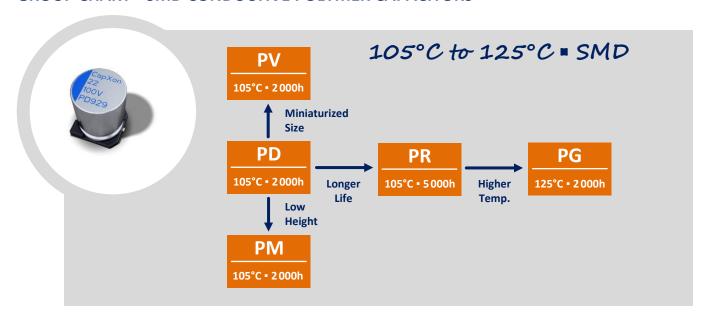
CapXon_Ver. 005 – 01/08/2023 Electrolytics Capacitor Solutions

Conductive Polymer Capacitors

SMD Types

OVERVIEW • SMD CONDUCTIVE POLYMER CAPACITORS

Features



Series	Datasheet	High Temperature	High Voltage	Low ESR	Low Height	Standard	Ultra Long Life	Ra	erature nge 'C)	Rai	tage nge V)	Ra	itance nge IF)	Endurance (hours)
PD	PDF		•	•		•	•	-55	+105	2.5	100	10	3300	2000
РМ	PDF		•	•	•			-55	+105	2.5	100	4.7	560	2000
PV	PDF		•	•	•			-55	+105	2.5	100	6.8	2500	2000
PR	PDF			•				-55	+105	6.3	50	10	1500	5000
PG	PDF	•		•				-55	+125	6.3	50	10	1500	2000

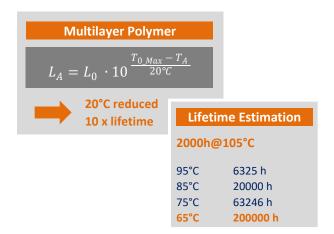
GROUP CHART • SMD CONDUCTIVE POLYMER CAPACITORS

ADDITIONAL INFORMATION

For further information on our SMD Conductive Polymer Capacitors, simply click on the symbols in the table below.

General Precautions & Guidelines	Packaging Information	3D Models	Reliability Tests	Environmental Declarations
		BD	T	

CapXon_Ver. 005 – 01/08/2023 Electrolytics Capacitor Solutions


LIFETIME • SMD CONDUCTIVE POLYMER CAPACITORS

SMD CONDUCTIVE POLYMER CAPACITORS don't have a dry-out effect, either by the ambient temperature or the temperature rise in the capacitor. Only the influence of material due to the temperature in the component and the conversion of the conductivity limit the lifetime. The Arrhenius rule also applies to CONDUCTIVE POLYMER CAPACITORS their application.

The lifetime increases TEN-TIMES when the application of the capacitor is reduced by 20°C.

Below an example of a 105°C series (PD) with 2000h endurance.

Lifetime	Legend			
	L ₀	Endurance at max. capacitor temperature		
*	L _A	Expected lifetime at application conditions		
	T _{0_Max}	Upper category temperature		
	T _A	Application temperature		

TYPICAL APPLICATIONS

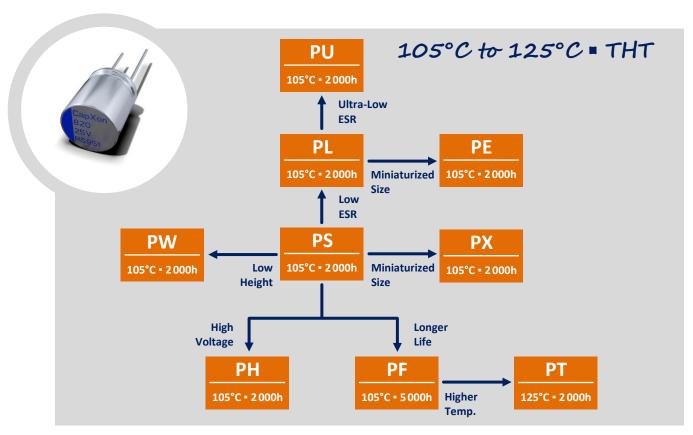
Input/Output Filter in DC/DC Converters	High Frequency	Equipment with	Server &	Voltage Stabilizing
	Applications	High Expected Life	Industrial PC	in LED Panels
	O M	₩		

CapXon_Ver. 005 – 01/08/2023 Electrolytics Capacitor Solutions

Conductive Polymer Capacitors

Radial Types

OVERVIEW • THT CONDUCTIVE POLYMER CAPACITORS


Features

Series	Datasheet	High Temperature	High Voltage	Low ESR	Low Height	Standard	Ultra Low ESR	Ultra Long Life	Ultra Miniaturized	Ra	erature nge C)		tage nge V)	Ra	itance nge IF)	Endurance (hours)
PS	PDF			•		•				-55	+105	2.5	25	39	3500	2000
PL	PDF			•						-55	+105	2.5	16	180	3500	2000
PU	PDF						•			-55	+105	2.5	10	180	3900	2000
PX	PDF			•	•					-55	+105	2.5	25	6.8	820	2000
PW	PDF			•	•					-55	+105	2.5	25	39	2500	2000
PE	PDF			•					•	-55	+105	2.5	16	270	1200	2000
PH	PDF		•	•						-55	+105	35	100	6.8	330	2000
PF	PDF			•				•		-55	+105	2.5	35	10	2700	5000
PT	PDF	•		•						-55	+125	2.5	50	22	2700	2000

GROUP CHART • THT CONDUCTIVE POLYMER CAPACITORS


LIFETIME • SMD CONDUCTIVE POLYMER CAPACITORS

THT CONDUCTIVE POLYMER CAPACITORS don't have a dry-out effect, either by the ambient temperature or the temperature rise in the capacitor. Only the influence of material due to the temperature in the component and the conversion of the conductivity limit the lifetime. The Arrhenius rule also applies to CONDUCTIVE POLYMER CAPACITORS their application.

The lifetime increases TEN-TIMES when the application of the capacitor is reduced by 20°C.

Below an example of a 105°C series (PS) with 2000h endurance.

Lifetime	Legend								
	L ₀	Endurance at max. capacitor temperature							
*	L _A	Expected lifetime at application conditions							
	T _{0_Max}	Upper category temperature							
	T _A	Application temperature							

ADDITIONAL INFORMATION

For further information on our THT Conductive Polymer Capacitors, simply click on the symbols in the table below.

TYPICAL APPLICATIONS

Input/Output Filter in DC/DC Converters	High Frequency	Equipment with	Server &	Voltage Stabilizing
	Applications	High Expected Life	Industrial PC	in LED Panels
	O M	*	····	

Hybrid Electrolytic Capacitors

SMD Types

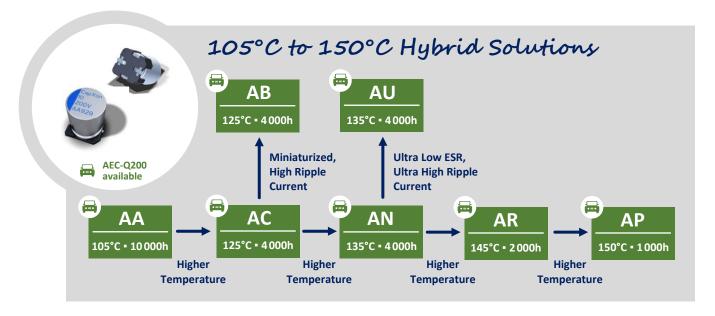
OVERVIEW • SMD HYBRID CONDUCTIVE POLYMER CAPACITORS

Features

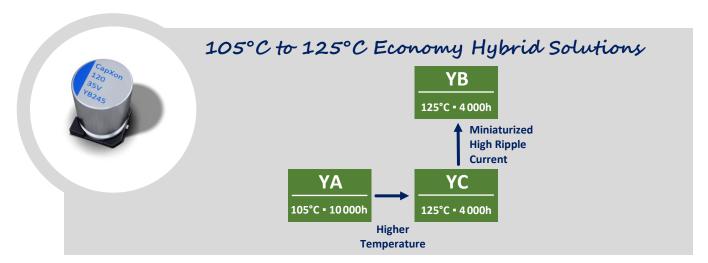
Series	Datasheet	AEC-Q200	High Temperature	Low ESR	Slim Type	Standard	Ultra Miniaturized	Ultra Low ESR	Vibration Proof	Ra	erature nge °C)	Rai	tage nge V)	Ra	citance nge uF)	Endurance (hours)
AA	PDF	•		•	•	•			•	-55	+105	16	200	10	1500	5000 to 10000
AC	PDF	•	•	•	•				•	-55	+125	16	100	10	1500	4000
AB	PDF	•	•	•			•	•	•	-55	+125	25	35	33	680	4000
AN	PDF	•	•	•					•	-55	+135	16	100	10	820	4000
AU NEW	PDF	•	•					•	•	-55	+135	25	100	22	680	4000
AR	PDF	•	•	•					•	-55	+145	16	80	22	560	2000
AP	PDF	•	•	•					•	-55	+150	16	80	22	560	1000

SMD ECONOMY SERIES FOR NON-AUTOMOTIVE APPLICATIONS

Series	Datasheet	AEC-Q200	High Temperature	Low ESR	Slim Type	Standard	Ultra Miniaturized	Ultra Low ESR	Vibration Proof	Ra	erature nge °C)	Rai	tage nge V)	Ra	citance nge uF)	Endurance (hours)
YA NEW	PDF			•		•				-55	+105	16	100	10	1500	10000
YC NEW	PDF		•	•		•				-55	+125	16	100	10	1500	4000
YB NEW	PDF		•	•		•	•	•		-55	+125	25	35	33	680	4000


ADDITIONAL INFORMATION

For further information on our SMD Hybrid Polymer Capacitors, simply click on the symbols in the table below.


General Precautions & Guidelines	Packaging Information	3D Models	Reliability Tests	Environmental Declarations
		BD	T	

GROUP CHART • HIGH PERFORMANCE SERIES FOR AUTOMOTIVE APPLICATIONS

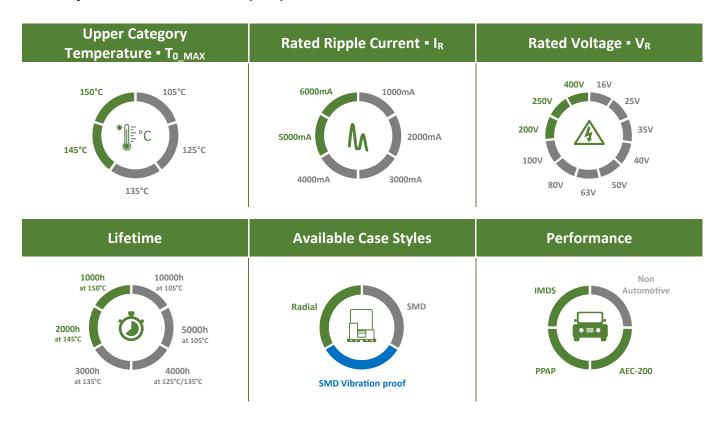
GROUP CHART • ECONOMY SERIES FOR NON-AUTOMOTIVE APPLICATIONS

TYPICAL APPLICATIONS


^{*} Automotive electronics not for YA, YB and YC series.

CapXon Ver. 005 – 01/08/2023 34 Electrolytics Capacitor Solutions

BENEFITS OF HYBRID POLYMER CAPACITORS


As a mix of the two worlds, the HYBRID POLYMER TECHNOLOGY offers the best performance of high-capacity storage components.

HYBRID POLYMER PERFORMANCE

The bandwidth and performance speak for themselves. Exceed existing limits and raise the bar.

That is performance "made by CapXon"

Hybrid Electrolytic Capacitors

Radial Types

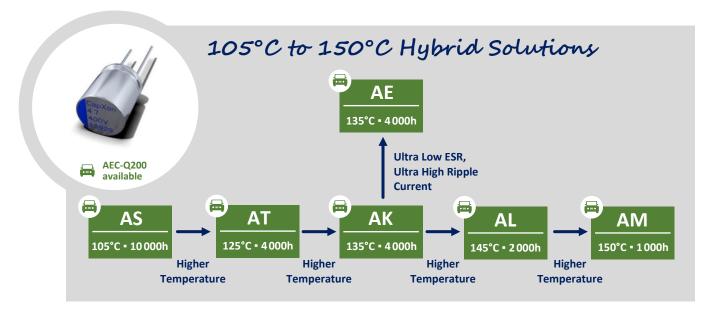
OVERVIEW • THT HYBRID POLYMER CONDUCTIVE CAPACITORS

Features

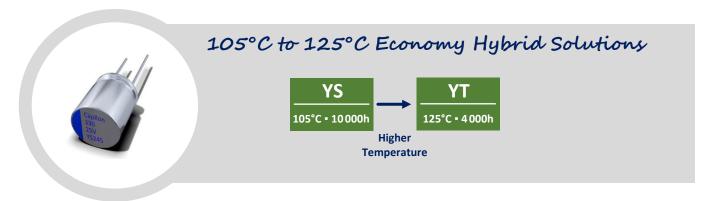
Series	Datasheet	AEC-Q200	High Temperature	High Voltage	Low ESR	Slim Type	Standard	Ultra Low ESR	Ra	erature nge 'C)	Rai	tage nge V)	Ra	itance nge ıF)	Endurance (hours)
AS	PDF	•		•	•	•	•		-55	+105	16	400	1.2	1500	2000 to 10000
AT	PDF	•	•		•	•			-55	+125	16	100	8.2	1500	2000 to 4000
AK	PDF	•	•		•				-55	+135	16	100	8.2	560	2000 to 3000
AE NEW	PDF	•	•					•	-55	+135	25	100	22	680	4000
AL	PDF	•	•		•				-55	+145	16	80	8.2	560	2000
AM	PDF	•	•		•				-55	+150	16	80	8.2	560	1000

THT ECONOMY SERIES FOR NON-AUTOMOTIVE APPLICATIONS

Series	Datasheet	AEC-Q200	High Temperature	High Voltage	Low ESR	Slim Type	Standard	Ultra Low ESR	Ra	erature nge 'C)	Rai	tage nge V)	Ra	itance nge ıF)	Endurance (hours)
YS NEW	PDF				•	•	•		-55	+105	16	100	10	1500	5000 to 10000
YT NEW	PDF		•		•	•	•		-55	+125	16	100	10	1500	2000 to 4000


ADDITIONAL INFORMATION

For further information on our THT Hybrid Polymer Capacitors, simply click on the symbols in the table below.


General Precautions & Guidelines	Packaging Information	3D Models	Reliability Tests	Environmental Declarations
		BD	T	

GROUP CHART • HIGH PERFORMANCE SERIES FOR AUTOMOTIVE APPLICATIONS

GROUP CHART • ECONOMY SERIES FOR NON-AUTOMOTIVE APPLICATIONS

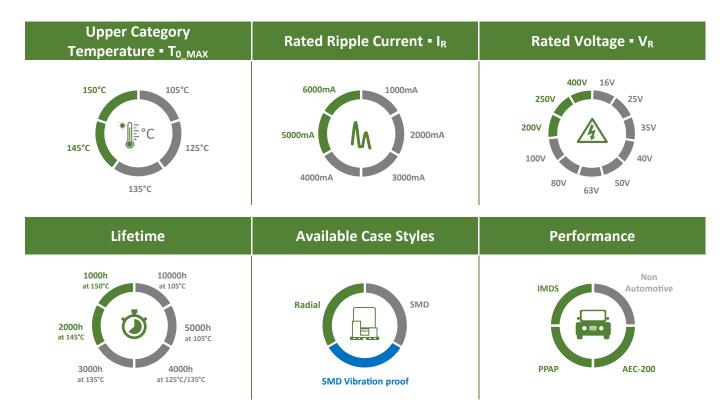
TYPICAL APPLICATIONS

Automotive	DC Link in	Harsh Environmental	Input/Output Filter in DC/DC Converters	Power and Battery
Electronics	Motor Drives	Applications		Decoupling
			=/=	


^{*} Automotive electronics not for YS and YT series.

CapXon Ver. 005 – 01/08/2023 38 Electrolytics Capacitor Solutions

BENEFITS OF HYBRID POLYMER CAPACITORS

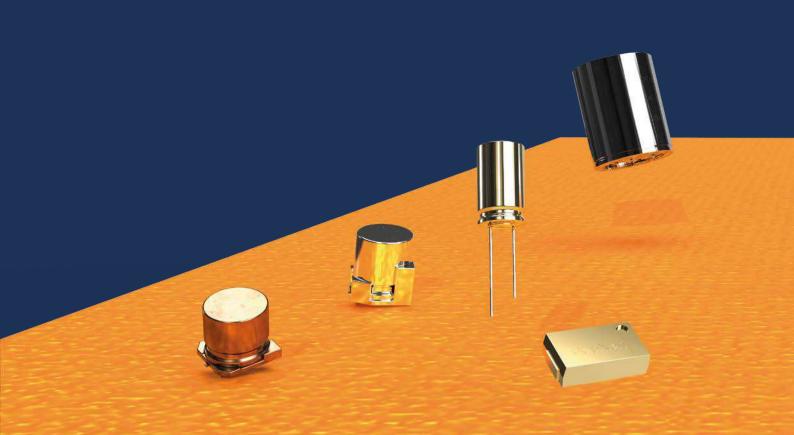

As a mix of the two worlds, the HYBRID POLYMER TECHNOLOGY offers the best performance of high-capacity storage components.

HYBRID POLYMER PERFORMANCE

The bandwidth and performance speak for themselves. Exceed existing limits and raise the bar.

That is performance "made by CapXon"

Europe


ViMOS Technologies GmbH

Mehlbeerenstraße 2 82024 Taufkirchen Germany

Contact us:

+49 89 5419 200 60

info@vimos-technologies.com

